ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2014, № 1, с. 85-89

_ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ _ ТЕХНИКА

УДК 535-15

ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЕТА НА ОСНОВЕ ПЕРИОДИЧЕСКИХ СТРУКТУР НИОБАТА ЛИТИЯ С ПЛАВНОЙ ПЕРЕСТРОЙКОЙ ЛЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ

© 2014 г. Д. Б. Колкер*,***, А. А. Бойко*,***, Н. Ю. Духовникова*,***, К. Г. Зенов*, И. В. Шерстов*,**, М. К. Старикова*, И. Б. Мирошниченко*,***, М. Б. Мирошниченко*, Д. А. Каштанов*, И. Б. Кузнецова*, М. Ю. Штыров*, S. Zachariadis****, А. И. Карапузиков*, А. А. Карапузиков*, В. Н. Локонов**

*ООО "Специальные технологии" Россия, 630060, Новосибирск, ул. Зеленая горка, 1/3 **OAO "OKTABA"

Россия, 630049, Новосибирск, Красный просп., 220 ***Новосибирский государственный технический университет Россия, 630092, Новосибирск, просп. К. Маркса, 20 ****Hochschule RheinMain University of Applied Sciences Kurt-Schumacher-Ring 18, 65197, Wiesbaden, Germany Поступила в редакцию 26.04.2013 г. После доработки 25.06.2013 г.

Разработан автоматизированный параметрический генератор света (п.г.с.) на основе веерных периодически поляризованных структур ниобата лития (fan-out MgO:PPLN). Плавная перестройка длины волны излучения (2.4–3.85 мкм) реализована путем линейного перемещения структур ниобата лития при помощи прецизионной моторизованной платформы, управляемой компьютером. Время сканирования длины волны в диапазоне 2.4–3.85 мкм составило ≤1 мин. П.г.с. создан для использования в составе лазерного оптико-акустического газоанализатора в качестве источника перестраиваемого излучения. Исследование спектра поглощения метана показало высокое совпадение экспериментальных и расчетных данных.

DOI: 10.7868/S003281621401025X

ВВЕДЕНИЕ

Измерение концентраций летучих соединений в выдыхаемом человеком воздухе представляет большой интерес при проведении клинико-диагностических исследований в медицинских учреждениях [1, 2]. В настоящее время широко велутся разработки различных приборов, предназначенных для анализа выдыхаемого человеком воздуха [3-6]. Выдох человека представляет собой сложную газовую смесь различных химических соединений, таких как CH_4 , C_2H_6 , C_2H_4 , CO, NO, H₂O₂, изотопы CO₂ и др. [3, 4]. Отдельные полосы поглощения этих веществ наиболее широко представлены в спектральном диапазоне 2-12 мкм. Регистрация и определение концентрации перечисленных газовых примесей в выдохе человека могли бы дать ценную информацию для диагностики биохимических и физиологических процессов, протекающих в организме человека при определенных заболеваниях [1-4].

При разработке лазерных газоаналитических приборов необходимо обеспечить возможность плавного сканирования длины волны излучения в спектральном диапазоне 2-12 мкм за время порядка 1-2 мин. К источникам излучения, удовлетворяющим этим требованиям, относятся параметрические генераторы света (п.г.с.). В спектральном диапазоне 2.5-4.5 мкм в п.г.с. широко используются периодически поляризованные структуры на основе ниобата лития (PPLN), которые имеют ряд преимуществ перед другими нелинейными кристаллами [7].

Существует две разновидности периодически поляризованных структур ниобата лития: с постоянным периодом [8] и с переменным периодом (веерная (fan-out) структура) [5, 9, 10]. Перестройка длины волны излучения в структурах с постоянным периодом осуществляется переключением дорожек кристалла с разным периодом структуры и плавным изменением температуры кристалла, что не позволяет выполнять быстрое сканирование длины волны [11]. Использование

Рис. 1. Схема экспериментальной установки. OH – оптический изолятор; $\lambda/2$ – полуволновая пластинка; $M_1 - M_6$ – зеркала; L_1 – линза; IIIA – шаговый двигатель; IIAB – измеритель длины волны; $\Phi\Pi$ – фотоприемник; OAA – оптико-акустический детектор; ΠK – компьютер.

веерных структур ниобата лития в п.г.с. обеспечивает плавную перестройку длины волны излучения при фиксированной температуре путем прецизионного линейного поперечного перемещения структуры относительно пучка накачки [5, 12].

Целью настоящей работы является разработка и исследование автоматизированного параметрического генератора света на основе веерных периодически поляризованных структур ниобата лития (fan-out MgO:PPLN) с плавной перестройкой длины волны излучения для использования в составе лазерного оптико-акустического газоанализатора медицинского назначения.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

На рис. 1 представлена оптическая схема экспериментальной установки для исследования п.г.с. на основе веерных периодически поляризованных структур ниобата лития. В состав установки входят: лазер накачки Nd:YLF, оптический изолятор OU, полуволновая пластинка $\lambda/2$, зеркала M_1-M_6 , линза L_1 , фотоприемник $\Phi\Pi$, измеритель длины волны $H\mathcal{AB}$, оптико-акустический детектор $OA\mathcal{A}$, компьютер ΠK .

Рис. 2. Топология веерной периодически поляризованной структуры ниобата лития.

В качестве источника накачки использован Nd:YLF-лазер с диодной накачкой, модель DTL-429QT (Laser-compact Group, Россия). Лазер работал в импульсно-периодическом режиме с модуляцией добротности. Длина волны излучения лазера составляла 1.053 мкм, длительность импульсов – 5–10 нс. Максимальная энергия импульсов излучения лазера при частоте повторения 100–5000 Гц составляла ~500 мкДж.

Импульсы излучения лазера накачки проходили через оптический изолятор Фарадея OU, полуволновую пластинку $\lambda/2$, отражались зеркалами M_3 , M_4 и фокусировались линзой L_1 в резонатор п.г.с., образованный зеркалами M_1 , M_2 . Поляризация излучения лазера накачки — вертикальная.

В п.г.с. использованы две структуры (Crystal Technology, США), топология которых представлена на рис. 2. Период первой структуры плавно изменялся в диапазоне 30.6–30.2 мкм, а второй структуры – в диапазоне 28.5–30.15 мкм. Размеры обеих структур составляли 50 × 11 × 1 мм.

В результате нелинейного преобразования импульсов лазера накачки в периодически поляризованных структурах ниобата лития из п.г.с. через зеркало M_2 выводилось излучение, перестраиваемое в спектральных диапазонах: 1.45–1.88 мкм ("сигнальная" волна) и 2.4–3.85 мкм ("холостая" волна). Далее пучок излучения п.г.с. проходил через дихроичное зеркало M_4 , делительные зеркала M_5 , M_6 и попадал в оптико-акустический детектор *ОАД*, описанный ранее в работах [13, 14], который использовался для записи спектров поглощения различных газовых смесей.

Дихроичное зеркало M_5 отражало излучение "сигнальной" волны п.г.с. на измеритель длины волны ИДB (Angstrom LSAL IR, Россия), пропуская только "холостую" волну. С помощью ИДB Angstrom определялась длина "сигнальной" волны из-

Рис. 3. Внешний вид резонатора п.г.с.

лучения п.г.с., затем – путем пересчета – длина "холостой" волны излучения.

Делительное зеркало M_6 отражало часть пучка "холостой" волны п.г.с. на фотоприемник $\Phi\Pi$ (МГ-32, Россия), который использовался для измерения мощности излучения п.г.с. и нормировки сигналов оптико-акустического детектора.

Электрические сигналы с ИДВ, ФП и ОАД поступали для обработки и отображения в ПК. Кроме того, с помощью компьютера осуществлялось управление частотой повторения и энергией импульсов излучения лазера накачки, температурой структур и перемещением моторизованной платформы п.г.с. (перестройка длины волны излучения).

ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЕТА

Для п.г.с. разработан резонатор оригинальной конструкции, представленный на рис. 3. Корпус п.г.с. размером $100 \times 80 \times 70$ мм выполнен в виде монолитного блока из алюминиевого сплава для обеспечения жесткости и высокой пассивной стабильности.

Резонатор п.г.с. длиной 58 мм образован полупрозрачным (M_2) и отражающим (M_1) плоскими зеркалами. В качестве M_2 использовано зеркало Layertec 105804, а в качестве M_1 – зеркало Thorlabs ME05-P01 с серебряным покрытием.

Периодически поляризованные структуры ниобата лития располагались на оптической оси резонатора п.г.с. внутри термостата, который с помощью элемента Пельтье поддерживал оптимальную температуру обеих структур на уровне 40–130°С с погрешностью $\leq \pm 0.1$ °С. Перестройка длины волны излучения п.г.с. осуществлялась путем прецизионного поперечного перемещения структур относительно оптической оси резонатора с помощью моторизованной линейной платформы 8MT173-20-E4 (Standa, Литва), которая приводилась в движение

Рис. 4. Экспериментальная зависимость длины "холостой" волны излучения п.г.с. от смещения моторизованной платформы.

шаговым двигателем ШД. Управление температурой структур и моторизованной платформой осуществлялось с помощью компьютера.

На рис. 4 представлена экспериментальная зависимость длины "холостой" волны излучения п.г.с. от смещения моторизованной платформы (число шагов ШД от начального положения), полученная при температуре структур 100°С.

Дискретность перемещения моторизированной платформы составляла 1.25 мкм, что на длине волны 3 мкм приводило к перестройке частоты излучения п.г.с. на ~0.1 см⁻¹. Анализ рис. 4 показывает, что спектральная характеристика п.г.с. состоит из двух частей, соответствующих различным периодически поляризованным структурам ниобата лития. Для первой структуры плавная перестройка получена в спектральном диапазоне 2.4-3.1 мкм, для второй – в спектральном диапазоне 3.3–3.85 мкм. Полное время сканирования в спектральном диапазоне 2.4-3.85 мкм составило ≤1 мин. Разрыв в перестроечной характеристике п.г.с. связан с особенностью использованных структур – отсутствием спектрального перекрытия при одинаковых температурах.

Отметим, что при повышении температуры структур до 129°С диапазон перестройки "холостой" волны п.г.с. смещался в сторону меньших длин волн и составлял 2.35–3.05 мкм для первой и 3.25–3.83 мкм для второй структуры. Таким образом, с помощью изменения рабочей температуры структур можно смещать спектральный промежуток в перестроечной характеристике обеих структур.

На рис. 5 представлена экспериментальная зависимость энергии импульсов излучения "холостой" волны п.г.с. от длины волны в спектральном диапазоне 2.4—3.85 мкм. Эксперименты проводились при следующих условиях: энергия импульсов

Рис. 5. Экспериментальная зависимость энергии импульсов п.г.с. от длины "холостой" волны излучения.

лазера накачки составляла 144 мкДж, частота повторения импульсов — 1700 Гц, температура периодически поляризованных структур ниобата лития — 101°С. Энергия импульсов излучения п.г.с. измерялась с помощью измерителя мощности/энергии Ophir Vega PE-10С (Израиль), установленного перед зеркалом M_6 .

Как видно из рис. 5, максимальная энергия импульсов "холостой" волны п.г.с. (~12 мкДж) наблюдалась вблизи длины волны 2.4 мкм. Средняя мощность излучения п.г.с. на длине волны 2.5 мкм при частоте повторения импульсов 1700 Гц составила ~20 мВт. В спектральном диапазоне 2.4—3.85 мкм энергия импульсов излучения п.г.с. монотонно падала с ростом длины волны. Это связано с увеличением уровня поглощения в ниобате лития на длинах волн >3.5 мкм. Порог генерации п.г.с. составил 10—16 мДж/см² в области 2.4—3.85 мкм.

ИССЛЕДОВАНИЕ СПЕКТРА ПОГЛОЩЕНИЯ СН₄

С помощью описанной выше экспериментальной установки исследован спектр поглощения метана. Как известно, метан имеет сильные полосы поглощения с центрами на длинах волн 3.3 и 7.5 мкм [15]. Для записи спектра поглощения метана выбран спектральный диапазон 3.25– 3.45 мкм (3200–2900 см⁻¹). При этом температура периодически поляризованных структур ниобата лития в п.г.с. составляла 116°С. Использована тестовая газовая смесь, содержащая азот с примесью 0.1% метана.

Оптико-акустический детектор, использованный в настоящей работе, имел длину 90 мм, частоту низшего резонанса вблизи 1700 Гц, добротность резонанса ~40 [13, 14]. Детектор заполнялся

Рис. 6. Спектр поглощения метана (газовая смесь 0.1% СН₄ в азоте): сплошная линия – эксперимент, штриховая – расчетный спектр из базы данных HITRAN.

тестовой газовой смесью методом продувки. Лазер накачки работал с частотой повторения импульсов, равной резонансной частоте *ОАД*. Длина волны п.г.с. плавно перестраивалась в спектральном диапазоне 3.25–3.45 мкм (3077–2899 см⁻¹), скорость перестройки составляла ~10 см⁻¹/с. Оптико-акустический детектор регистрировал спектр поглощения метана. Для нормировки сигналов *ОАД* по мощности излучения п.г.с. использовались сигналы с $\Phi\Pi$. Нормированный спектр поглощения метана записывался компьютером в реальном времени.

На рис. 6 представлены экспериментальный и расчетный спектры поглощения метана вблизи частоты 3030 см⁻¹ (3.3 мкм). Расчетный спектр построен с использованием спектральной базы HITRAN [15] с учетом спектральной ширины линии излучения п.г.с. 3-5 см⁻¹. Как видно из рис. 6, экспериментальная и расчетная кривые спектра поглощения метана практически совпадают, что подтверждает высокую степень достоверности полученных результатов.

ЗАКЛЮЧЕНИЕ

Разработанный автоматизированный п.г.с. обеспечивает плавную перестройку длины волны излучения в спектральном диапазоне 2.4—3.85 мкм. В п.г.с. использованы веерные периодически поляризованные структуры ниобата лития. Перестройка длины волны осуществлялась прецизионным линейным перемещением структур.

С помощью разработанного п.г.с. проведено исследование спектра поглощения метана. Эксперименты показали высокую степень достоверности полученных результатов. Создан макет лазерного газоанализатора на основе п.г.с. и оптикоакустического детектора для регистрации спектров поглощения различных газообразных веществ. Система может быть использована для промышленных, медицинских и специальных применений.

Работа была выполнена при финансовой поддержке ФЦПК, ГК № 16.522.11.2001.

СПИСОК ЛИТЕРАТУРЫ

- 1. Агеев Б.Г., Кистенёв Ю.В., Некрасов О.Ю. и др. // Бюллетень сибирской медицины. 2012. № 4. С. 116.
- 2. Чуйкова К.И., Кистенёв К.И., Гомбоева С.С. // Бюллетень сибирской медицины. 2012. № 6. С. 178.
- 3. Степанов Е.В. // Труды института общей физики им. А.М. Прохорова. 2005. Т. 61. С. 5.
- 4. Бинги В.Н., Степанов Е.В., Чучалин А.Г. и др. // Труды института общей физики им. А.М. Прохорова. 2005. Т. 61. С. 189.
- Van Herpen M.M.J.W., Li S., Bisson S.E. et. al. // Appl. Phys. B. 2002. V. 75. P. 329.

- 6. *Miklos A., Lim C.-H., Hsiang W.-W. et al.* // Appl. Opt. 2002. V. 41. № 15. P. 2985.
- Sorokina I.T., Vodopyanov K.L. // Topics Appl. Phys. 2003. V. 89. P. 141.
- 8. Myers L.E., Eckardt R.C., Fejer M.M., Byer R.L. // Opt. Soc. Am. B. 1995. V. 20. № 12. P. 2102.
- 9. *Adler F., Cossel K.C., Thorpe M.J. et al.* // Opt. Lett. 2009. V. 34. № 9. P. 1330.
- Nelet A., Jonusauskas G., Degert J., Freysz E. // CLEO-2007. Baltimore, 2007. P. 2.
- 11. Колкер Д.Б., Пустовалова Р.В., Старикова М.К. и др. // ПТЭ. 2012. Т. 24. № 2. Р. 124.
- Gorelik P.V., Wong F.N., Kolker D.B., Zondy J.-J. // Opt. Lett. 2006. V. 31. P. 2039.
- 13. Lee C.-M., Bychkov K.V., Kapitanov V.A. et al. // Opt. Eng. 2007. V. 46. P. 64302.
- Карапузиков А.И., Шерстов И.В., Агеев Б.Г. и др. // Оптика атмосферы и океана. 2007. Т. 20. № 5. С. 453.
- 15. Rothman L.S., Jacquemart D., Barbe A. et al. // JQSRT. 2005. V. 96. P. 139.